Ray Cluster Configuration

To create Ray Clusters using the CodeFlare SDK a cluster configuration needs to be created first. This is what a typical cluster configuration would look like; Note: The values for CPU and Memory are at the minimum requirements for creating the Ray Cluster.

from codeflare_sdk import Cluster, ClusterConfiguration

cluster = Cluster(ClusterConfiguration(
    name='ray-example', # Mandatory Field
    namespace='default', # Default None
    head_cpu_requests=1, # Default 2
    head_cpu_limits=1, # Default 2
    head_memory_requests=1, # Default 8
    head_memory_limits=1, # Default 8
    head_extended_resource_requests={'nvidia.com/gpu':0}, # Default 0
    worker_extended_resource_requests={'nvidia.com/gpu':0}, # Default 0
    num_workers=1, # Default 1
    worker_cpu_requests=1, # Default 1
    worker_cpu_limits=1, # Default 1
    worker_memory_requests=2, # Default 2
    worker_memory_limits=2, # Default 2
    # image="", # Optional Field
    machine_types=["m5.xlarge", "g4dn.xlarge"],
    labels={"exampleLabel": "example", "secondLabel": "example"},
))

Note

quay.io/modh/ray:2.35.0-py39-cu121 is the default image used by the CodeFlare SDK for creating a RayCluster resource. If you have your own Ray image which suits your purposes, specify it in image field to override the default image. If you are using ROCm compatible GPUs you can use quay.io/modh/ray:2.35.0-py39-rocm61. You can also find documentation on building a custom image here.

The labels={"exampleLabel": "example"} parameter can be used to apply additional labels to the RayCluster resource.

After creating their cluster, a user can call cluster.up() and cluster.down() to respectively create or remove the Ray Cluster.

Deprecating Parameters

The following parameters of the ClusterConfiguration are being deprecated.

Deprecated Parameter

Replaced By

head_cpus

head_cpu_requests, head_cpu_limits

head_memory

head_memory_requests, head_memory_limits

min_cpus

worker_cpu_requests

max_cpus

worker_cpu_limits

min_memory

worker_memory_requests

max_memory

worker_memory_limits

head_gpus

head_extended_resource_requests

num_gpus

worker_extended_resource_requests